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~R.gener.t iv. stopping probisas are stopping prob l which recosa.nce

tr~s the initial stat . upon stopp ing, An aigor itl 1. presented which o1~u
a ssat—Markov regsaerati ,s stopping probi ss with a finit• n~~b.r of continu e

action, by solving a •.qusace of stopping problews. New results for the opti-

sal stopping probl are obtained as veil as for the regenerat ive stopping

probles. Two sodels in th. literature are used as d.tailsd axasples of the

I s lgor ith. .
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I. Introduction

Perhaps the most interesting result In the th.o ry of optimal stopping f rom

a co~~utaUonal standpoint is the monotone stopping theorem (Chow, lobbias ,

8ie~~~md [6 , Theorem 3.3) ,  Ross [14 , Th.orss 6.14), Abd.l-U~~sed [1)). That

theorem, which gives conditions for which a myopic policy is optimal, is re-

considered in the next section • The main two differences fro. earlier version .

are a mars general cost structure and permitting a finite n~~~er of continue

actions rather than one cont inue action . Our motivation for r.considsring the

monotone stopping theorem is to apply it in solving regenerative stopping prob—

1~~~ .
p

l.gen.raeiv. stopping probl are stopping probl which rscoemsnce from

the initial state upon stopping. They have an infinite planning borison and

either averagi ng or discount ing must be used . Th. most i~~ortant .~~.‘ples of

regenerative stopping probls coma from the literatur e on maintenance models,

and a co~~r•b.naive description of maintenance models is available in the sta r—

P vey paper of Pierskalla and Voelket (16]. The impetu. for this stud y cane from

Laplan’s modal (14] of the optimal investigation of a production system. There

the problem is to decide , based on reported monthly operating costs, when man—

agensut should investigate and corr ect if necessary (stop). Oecs correction

takes place the problem recoeneness from the initia l state. In (3] 1uc~~~” and

Miller solve the Eaplan model as a discounted regenerative stopp ing prob lem and

also obtain oem general results for discoun ted regenerative stopp ing pr obi .
p

l.gen.rativs stopping prob1~~~ vets first studied independently by Irender

(4) and Irsimag (3] . Irelasa celled then bSssry decision renewal probl~~~.

Ioth authors provsd that rsgen erstt ve stopping probl could be solved by

solving an appropriate stopping problem wh ich v will call a ) -.stoppthg problem

1
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where A has the interpretatio n as the average cost per period. The 1-atopping

• problem is defined by changing the cost sssociat..d vith a continue action by

sát isct ing the emount A fro. it. Let ~(A) be the sxpscted cost of the A—atop-

ping problem using an optimal policy and start ing fro. the initial state . The

theorem of Irender and Ireimen is that if 1 satisfies V(A 5) — 0, then the

right A has been used and the optimal decision rule for the A5-etopping problem

is also the optimal decision rule for the regenerative stopping problem. For

a~ample , Taylor (21, Section 4) uses this theorem to solve an optimal replace—

mant under cumulative damages problem by determinin g 1* in closed form. In

111) Feldman has reconsidered a more general version of Taylor ’s problem and

solved it by a different method. in problems where ). cannot be determined in

closed form, an alternative would be to solv, regenerative stopping probl

by solving a sequence of A—stopping probl~~ ending with the 10-etopping prob-

lem, but neither Ireuder nor Breiman considered this approach . This approach

s quite promising if the monotone stoppin g theorem can be applied to each

A—stopp ing problem .

In Section 3 the theorem of Brander and Ireiman is generalized by allowing

a finite number of continue actions and let ting th. t ime spent in each state be

a random variable so tha t the problem is ssmi—)brkov . Thre. further results

are obtained which lead to an algorithe for solving regenerative semi-44srkov

stopping problems by solving a sequence of A-stopping probl~~~.

In the las t par t of the paper the replscenent— .tockage model of Detain and

Liebermaz (9) and the maintenance model with uncertain information of losenfi.ld

(1$) are solved by this algoritl , and the approach s~~~~ quite efficient and

flexible . However the algori the has not been tested by solving large scale

• probl~~~.

2
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II. Optimal Stopping

Our approach is to follow the formulation of loss 120] and descri be the
optimal stopping problem as a I4arkov decisio n problem w ith a cou ntable ntm ber
of states 0, 1,... where state 0 is the initial state . Our formulation La
discrete—time and the proc ess is obse rved at time points t — 0, 1, 2,
When the system is observed in state I at tias t we choose from a f inite set
of continue actions A1 or decide to stop. If action a £ A~ is chosen, we receive
a cost of C(l ,a) and th. process goe. and to next state at time t + 1 according
to the probabilities P1~ (a). If we stop we receive the cost C(i ,s) and go to
state A where we stay forever and C(t&) • 0 each period. The artificial state

A is a notational convenience wh ich allows us to let the planning horizon to be

infinite. An admissibl e policy 1? is a decision rule which assigns to each

stat. I and period t an action ,T(i ,t) £ A1
j( s ) , whe re s is the stop decisio n.

Our objective is to find a decision rule which minimizes the expected cost up

to and including sto~.ping where the initial state is 0.

• In orde r that our objective function be v.11—defined and that th. mono—

tone stopping theorem applies to our problem, we need so me additional restric—

tions on the cost structure . We will asst~~ that there is a sca lar N end a set

• I S containing A which satisfies the three assumptions below. Often SC , the con-

pl sut of S , viii be a finite set of stat es and it may be empty. If ~ C is not

~~~

ty it will contain the initial state 0. Loosely spea~~ng, the system

starts in S~ and eventually reaches S , the “well—behaved” set (Asst~~ tion

C 3iii below) .

Aa•a~~~tion 1. Bith.r (i) or (ii) holds. Condition (i) is that IC(i,s)l C M

for all states i. Condition (ii) is that for all states i, CU,s) ) — II,
0

and P~~(a) ) 0 implies that C U, s) > C(i .s) . Purtbezmore if i £ then

O 3
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CU .) c fl and P~~(a) ) 0 implies C(j,s) c N .

Mi~~.&&~~.i• 
lof (min CCL .)) ) —  W a n d sup (max C(i a)) < N.
i c a t A 1 I C I C a t A

Assumption 31. There are numbers N and 6 ) 0 such that

m t  ( L~ ~j j S~ 
0 ,

i c S C (j £ S

where is the probability of going fro. state i to state j in N period s

and depends on the decision rule . We require that th. above inequality holds

for all decision rules.

(3i1). The set S is closed . By this ve mean that if i t  S and j ~~~

then Pt~(a) • 0 for all a £ A 1. The stop action also satisfies (ii) since

A t $
C

• (3iii). For some £ ) 0, C(i,a) > £ for all 1 £ S~ (A) and a £ A1.

The Assumptions 1 and 2 imply that the costs are bounded above and below

for states in S~, and Assumption 3i says that there is an N—stage contraction

on the probability of staying in S~ . Ass*~~ tion 3ii assumes that when the sys-

tea reaches the set S it will stay in S. Assumption 3iii states that ther e is

a strictly positive cost of continuing when the system is in the set S.

Let end a
~ 

be the state and action at t in. t. Then the expected return

starting from stat. I and using the policy v is

G~(i) • £,(liiI (~~~ C(Z t,s~
)IZ o — i) ) .

This expression I. well-defined because of
I

L~~~ 1. Let z • aix (0,—a) . Then for all polici.s t,

C(2
~
,at))IZ0 

- 1))) ø , ~ + ~~.
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Proof. The lemea follows from the fact that the continue cost per period is

only negative when the system is in S~, and the expected time in S~ is lass

than or equal to $16 for any policy. To 111/6 we add N since — N is a lower

bound on the cost of stopping. Q.E.D.

We let G(1) • tnt G~(i) for all 1, so that C is the optimal return func—

tion. We will prove (L .s 2 and 3) that C satisfies the equation of opti—

nality
I I

6(i) • ein~~C(i ,s) , sin (C(i ,a) +EP ij(a)G(J))). (1)
a c A 1 /

Our formulation differs Eros loss (20) in two major ways. Unlike ROSS

we permit a finite number of continue actions . The generalization to a finite

nt~~ir of continue actions does not complicate the derivation of the monotone

stopping theorem which gives a condition for stopping to be optimal. It does

represent a major complication for obtaining the optimal policy since we must

determine which continue action to use for states where stopping is not opti—

mel. This complication is addressed in the last section where specific models

are solved. It se possible to further generalize the action space us ing,

for example , the methods of Pox 112).

The other difference between our for mu lations and that of Ross is that he

ha. mor e restrictions on the cost structure . He requires f o r  all states i that

(a) 0 > C(i s) — N and (b) for •os c > 0, C(i,a) > c. Although on (20, p. 135)

loss doss not require that C(i ,s) < 0, his proof of the monotone stopping theorem

requires nonpositive stepping costs.

The general stat ement of the optimal stopp ing problem is give n in Chapter 3

r of Chow, Bobbins, sad Sia~~~~d 16] . They asatma that a sequence of random wsri—

ables Y1, Y2 , . . .  having a known joint distribution are observed . If vs stop at

S
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the nth st ate after having observed 7l”~~n’ then a cost of

• is incurred. The objective is to stop so as to minimize the expected value of

the cost received upon stopping . If for s~~~ sample path we never stop, then

the cost is undefined so that this formulation requires that an an admissible

decision rule stop with probability one.

Beside the lim itation of a countable state space , our )1arkov decision for—

• sul ati on is more restrictive than that of Chow , Robb ins , and Siegmund [6] . For

example . Deraan and Sacks (10) consider an equipmen t replacemen t problem which

fits our Narkov decision formulation except that their criterion is to minimize

the expected cost up to and including stopping divided by the nu~~er of periods

until stopping. This cost structure can be handled by the Chow, Robbins, and

Siegmund formulation but not by ours . In that paper they also ention the more

plausible criterion of the expected cost up to and including stopping divided by

the expected nu~~er of periods before stopping which is a regenerative stopping

proble m .

Returning to our model , we wan t to establish the monotone stopp ing theorem

under Assumptions 1—3. Our approach follows that of Ross [20) . Although we

admit policies where the expec ted t ine until stoppi ng is inf inite , we begin by

observing that we can eliminate those policies from further consideration since

their expected cost in infinite. This is true using L~~~a 1, the fact that the

expected t iae spent in s~(A} is infinite, and Aasr~~tion 3iii. In the l—~~~
to follow we will implicitly use the fact that 6(A) • 0.

L s  2. For j cs/ (A),

(a) The optimal return function satisfies the equation of optimality (1).

(b) The stationary policy vbich for each state j £ S selects the action

which minimizes the right hand side of (1) is optimal.

6
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(c) The optimal return function C satisfies C(j,s) > CU) > — N.

Proof. The set $ is closed and the states in S satisfy Ross’ restrictions

on the cost structure . Furthermore, as noted above we only need consider

decision rules such that the expected t ime until stopping is fini te . There—
1

fore Boss ’ argumsnts [20, p. 135-136) apply directly to prove (a) and (b) of

• the 1~~~~. The upper bound in (c) is obvious and the lower bound holds since

the cost of stopping is bounded below by - N and the costs of continuing are
nonnegative. Q E.D.

L.~~~ 3. For j £ SC ,

(a) and (b) of Lema 2 hold.

(c) The optimal return function C is bounded above and below.

Proof. Let u and v be bounded functions on SC, r be a policy defined on SC

~~ c(u ,v) • sup f u ( i ) — v( i )t .  Let T~(u) be the expected return in thei C S C
first N periods using the policy “ where u is the terminal reward vector,

aider th. assumption that if a state j c S is reached in some period n,

n < N, then the process terminates with a reward C(.j). Therefore

T~(v)) < (1—6) p(u,v) since expected probability of leaving SC in N period s is at

least 6 by Assumption 3i. Also T~() is bounded if u is boraided since both the

costs of cont inu ing and stopping are bounded on SC, and the possibility of

reaching S does not destroy the boundedness properly. The latter is estab-

lished by combining L~~~a 2c with the implication of Assumption lii that the

first tr ansition out of S~ will be to a state wi th a bounded stopping cost.

Thus we can have the N—state contraction property, and (a) , (b), and Cc) of

the 1 a  follow from Denardo (7 ) . Q. I .D .

L 4. The nou.$ative term C(i s) — 6(i) is bounded.

Proof. If Asai~~~tion 11 holds the r sult is i diate since C(i,s) is bounded

above, and by L~~~~s 2c and 3c 6(1) is bounded below.

7
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If Assumption lii holds then for i £ S C(i,s) • 6(1) since the continue

costs are nonnegativ, and C(j,s) > C(i ,s) if P~~ ‘ 0. For I c Sc CCI,.) is

• bounded above by assumption, and by L~~~a 3c 6(1) is bounded below. Q E.D.

Let be the optimal return funct ion for en n period proble. where we

are required to have stopped after n periods Clearly G~ > > c.
L~~~a 5. For each state i, h a  G°(i) • 6(1).

Proof. By Le as 2b and 3b there is an optimal policy which can be obtained

f rom (1). Following Ross [20, Theorem 6.13) we let w be this policy and r be

the policy which uses the same action as r for period s 0,1,. ..,n—l , but stops

in period n. Then G°(i) < G~~(i) and

(i) — 6(i) • E (C(j ,s) — 6(j )] Pfz —j ]
n j•0

where is the state in period n. By Lames 4 the term in brackets is bounded

and since th. expected time until stopping startin g from any state i is

bounded , PfZ •A) -. 1 as n • • which show that 11* ~~ (i) • 6(i). Q.E D.
• a

L a  5 has been called a stability condition by Ross [20] and Breiman L 3 ) .

L~~~ s 2 , 3, and S are sufficient to establish the monotone stopping theorem

Let

I • i:C(i,s) ( mm (C(i a) + E P~1 CU ,.))a c A ~ j

B is precisely those states for which stopping is at least as good as continuing

one more period and then stopping. Clearly is I ~ B we continue, but not neces-

sarily with the action which minimizes C(i a) + P~~EC(i.s). Rather than

stating the monotone stoppi ng theorem for the set B we state it for a subset

of D of I. Thi. can be useful since a subse t of B may be easier to identify

than I.

a
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The I’~ uoto ne Condition. A set of states D satisfies the monotone condition if

it 1. closed and is a subset of I.

~~~~~~ 
(The Nonotone Stopping Thsorem). If a set D satisfies the monoto ne

condition then for i c D the optimal decision is to stop .

Proof. The proof of Ross [20 , Theorem 6.14] applies. Using the definition of

B and the fact that DCI i. closed, Ross’ proof shows that di(i) • C(1 s ) for

all n and i ~ D. Then by Leans 5 6(i) • him G°~~) • C(i ,s). Therefore the stop

decision minimizes the right hand of sids of sq. (1), and by ..emea. 2b and 3b

the stop decision is therefore optimal. Q.E.D.

III. Regenerative Stoppinj Problems

Regenerative stopping problems are stopping problems which return to

state 0 upon stopping and reccanence. We will continue with the countable

state space of the previous section except for eliminating the artificial

state A. However the transition times will be generalized so that we have a

s.mI—Mirkov formolation . There is no standard sezi—Markov decision model

(compare for example Denardo [8), Lippuan [15], and Ross [19)) and we will use

one of the simpler versions.

The process begins at state 0 at t iae 0. When the syste m is obse rved in

state I (i ediately) after the nth transition, we choose from a finite set A 1
of continue actions or dec ide to stop. If the action a r A1 is chosen the

process goes to the next stste according to th. probabilities P11(a). Given

that the next state j, the time for the transition to take place is a random

variable Tjia • We will require that for some 6 > 0, c > 0, ~~ P~~ (a) 
~~~~~~a j—o ~ J

‘ 1 — £ for all I and a where ‘ij a~~ 
is the distribution function of ~~~~

This condition says that for every state i and continu . action a there is a

positive probability of at least £ that the transition t ime will be grea ter

• 

1$  

9



than 6 which, in turn, means that there is a strictl y positive bound on the

expected t ie. until the system returns to stats 0. For any state i, i > 0,

we may choose to stop . Then P10(s) • 1 and the t ime until reaching state t ire

is given by the random var iable T 15. There are no restrictions on T15 except

when i • 0. For state 0 we require that for some 6 > 0 , £ > 0, Prob (T
0 

> 6) > c.

We require that both !LT 1J5 ) and E (Ti. ] be finite. Th. costs for continuing

and stopping are given by the nonnegative random functions C(i .a.Tjj a) and

C (1 i ,T 1 ) respectively. They are both incurred at the beg inning of a transi-

tion . Following Lippman (15) we will let a policy w be a decision rule which,

given the number of the transition and the state , says which action is to be

chosen . it would be preferable to have the decision rule depend on the t ime

of the t ransition rather than the number of the transition , since in a finite

horizon semi—Markov problem the optimal policy would depend on the time remain-

ing to the end of the horizon but not the number of the transition (Jewell ,

[13)). However , the additional complication of allowing the decision rule to

depend on time does not seem justified for our purposes . For a policy n we

let

X1, • 11. sup 
~ 

EIW v (t))
t

where W (t) is the expected cost up to and including t using the policy v

starting from state 0, so that X represents the average cost per period using

the policy r . The conditions on the Tija and T0 
and the nonnegati vety of the

costs assure that is v .11—defined although possibly Infinite. Let

• inf X, . Our objective is to find a policy i~~ such that • I• .

We propose to solve our ss*i—Markov regenerativ , stopp ing by solving a

sequence of A—stoppin g problems where 1, — < ~. < , has the interpretation

as the average cost per period. A A—s topping problem is constructed from the

10
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data of a semi—$srkov regenerative stopping problem by letting the P
~~

(a) and

the time between transitions remain unchanged, and setting

C(i ,a) “~~~
Pi1(a) E(C(i.a~T~35

) — AT~35)

and

C(i,s) • E(C(i ,s,T15) — AT15 ).

Thus we have an optimal stopping problem which may or may not satisfy

Assumptions 1-3 and for which the length of tim. between transitions is a

random variable . Clearly the optima l stopping problem is unaffected by the

length of tiae between transitions as long as they are finite with probability

one.

Let C(i ,A) be the optimal return function of the A—stopping problem from

the initial state i. The case where i • 0 is important enough that we introduce

the function V define d by V( A ) • C(0 ,A ) .  Let A be the set of A such that the

A—stoppin g problem satisfies Assumptions 1—3 of the previous section. The set

A is a semi—infinite interva l since if A’ c A and A c A’ then A £ A since only

Aasi ption 3111 will depend on the choic. of A and it is easier to satisfy the

smaller the value of A. Unless otherwise stated , we will be assuming that

A £ A for any A—stopping problem being considered . lesides illustrating the

notation, the following is an • a ~ple of a problem where there is no A* such

that V( A ) • 0.

!~~~!.!J 
Consider a discrete t ime problem where there is only one continue

action for each state , and Pi i+i(a) a ~ and C(i ,a,l) • 1 for all i. For

states i ) 1, the stop ac t ion takes no time CT15 • 0 with probability one) and

C(i ,s, 0) • 1. b r  state 0 the stop act ion takes one period at a cost of 10.

ly inspectio n the optiasi policy for the regenerative s topp ing problem is to

never stop and the average cost per period is 1. If A < 1 then the set S can

0
11
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be the entire space 0,1,2 . . .  and Assumptions 1—3 holds for the A—stopping prob-

lem. If A > 1, the set S as t be empty by Assumption 3iii, but then Assumptica

31 cannot be satisfied. Therefore A • C— •,1).

The function V(A) for this problem is

V(X) • 2 — A A ( 1 (the optimal pol icy is to st op after

the transition from state 0 to state 1).

V ( A )  — — A > 1 (the optimal policy is to never stop).

Clearly there is no AC such that V(A5) — 0.

Let “ be a policy for the A—stopping problem v .ich satis fies E(TJ c

where I is the random t ime until stopping using the pol icy r. Let V1(A) be the

expected cost of the A-stopping problem starting from state 0 using the policy

v. Then

V,,(A) — E E C ] — AE (T) (2 )

where C is the original (without subtracting the A terms) cost up to and in—

cluding stopping using the policy ‘~. Thu. E( C] Vr(O) • Gr (O
~
O)• Equation

(2) simply decomposes the costs of a A—stopp ing problem.

We viii now prove the theorem of Brander (41 and Breiman (33 in the semi—

Msrkov case w here po licies are admitted where the expected time until stopping

is infinite .

Theorem 2. Suppose that A c A satisfies V(A *) • 0. Than the policy which is

optimal f or the \ —stop ping problem is optimal fo r the regenerati v , stoppi ng

problem. Also A~ • Z
5, the optimal expected cost per period.

Proof. Let it be a sta tio nary policy which solves the A 5—stoppi ng problem.
-I

Such a policy exists by L~~~~. 2 and 3 and furthe rmere E(TW J • where T
~ 

is

the random tise until stoppi ng using the policy it. The expected cost up to

and including returning to state 0 us ing the policy it is A I(T ,~J from (2)

since V,1(A *) • V(A~) • 0.

0
12

a —. —— —-—-- — . .—-—----— ——--- — 
___ —=~--

- —
~~~~~~ 

.- -
~
—-.— ~~~~~~~



- -— -
~~~~~~~~~~ 

-
r. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- —_ 

-~~~~~~-— -
~~

-
p

Let be the random cost in the regenerative stopping problem for the ith
p

return to state 0 using the policy it. We have just shown that LIT1) • A E1T .,~).
By Ross (20 , Theorem 3.163 including his subsequent remarks 11.. 

~ 
!(W

~
(t) 3 • A~.

Since X — h a  ~ E(W~(t)3 we will have establish ed that A~ • once we have
t it t . . ., t

established that it is the optimal policy f or the regenerative stopping problem .

Nov let ii’ be an arbitrary admissible policy for the regenerative stopping

problem with E(T
~

,]  •. The expected cost up to and including returning to

state 0 using the policy it ’ for the regenerative stopping problem is greater

than or equal to A CELT it,) using V,,,(X*) > V(A ) — 0 and equation (2). The same

analysis as above shows that its .

~~

. E[W
~
,(t)] > A~ .

t *~~~
Let “ be an arbitrary policy for the regenerative stopping problem with

EIT
~
,] — ~~. We consider a modified regenerative stopping problem where

C(i .a .Ti~~
)’ S C(i ,a ,T~~~) —

and
T t ’ •1/4 

~ 
t

, ~~~~~~~~~~~~ i —

The proo f consists of showing that the average reward of the modified regenera-

tive stopping problem is greater than or equal to zero and therefore that the

average reward for the original regenerative stopping problem is greater than

or equal to X .

Th. expected cost up to and including returning to state 0 for the modi-

fied regenerative problem ii V,,,(A*) since th. modified regenerative problem
has the same costs as the AC_stopping problem. By using L e a  1 (A C 

£ A) and

C
the fact that EI?

~.J a —, Boss [20, Theorem 3.16) can be easily modified to

show that the sverage reward of the modified regenerative stopping problem is

greater than or equal to zero. Q.E.D.
g

The fo1lovt~g propositions will be used in the a1gorit~~ for solving re-

generative stopping probl~~~. The first establishes some useful properties

13
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of the V func t ion. The second gives an alter native optimality condition, and

the third shows how the solutions improve as successive A—stopping problems

at’S Solved.

Proposition 1. V :/t • B is a decreasing, and finite—valued, and concave func-

tion of A. Since V is concave it is known that the right and left hand deriva—

tivss exist everywhere on the interior of A. Furthermore

V ’ (A )  > — LET1] V~(A) (3)

where V ’ and V are the left and right hand derivatives of V and TA is the

stopping time of a A—optimal policy.

Proof. It is clear that V is decreasi ng in A. Furthermore V > — ~ for A c A

since Lemea 1 applies. To show that V is concave consider points A ,czA1 +

(l—Q)A2, and 12 where 0 < n < 1. Let it be an optimal stationary policy for

the + (1—A) 12—stopping problem. If that same policy it is used for the

Ii and 
~2 

stopping problem then from (2)

V (A1cz + (1_o) 12 ) a V (o.11 + (1_n)12) 
a aV (11) + (1—o) V ( A 2 ) .

However

and V,,(A 2) > V( X~) which shows the concavity of V.

The inequalities on the right and left hand derivatives are established

by using a similar approach. Let it be the optimal policy for the A—stopping

problem . Then for £ > 0,

V (A+c) — V( X ) < V
~
(A+r) - V,(X) — — c E[T,~]

where T is stopping t ime of the policy it. Letting c go to zero establishes

the result for V (A) . The proof for V ’(A) is similar. Q.E.D.

Proposition 2. If it is opt imal for both a A1—stopping problem and a 12—st op—

4 ping problem, where V(11) > 0 and T(12) ~ 0, A1 < A2, sod A1, 12 £ A, then it is

optimal for the regenerative stopping problem.

14
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Proof. Pro. (2) V (A) • V (A ) — (1—1 )1(T). By Proposition I, V(.) is con—it i t 2  2 it

cave, V’(A2) > — 1(T1), and V ( 11) c — 1(T1), Therefore V (A) • — 1(T1) • V (A)

for c A c 12. This together with either V1(11) — V(11) or V1(12) — V(A2)

* 
implies that V1(X) — V(X) for A~ A 12. Furthermore since V(11) ~ 0 and V (A 2 ) ~ 0.

it is clear that V(A) — 0 for ~~me A between Al and 12 and that it ii optimal for

the regenerative stopping problem by Theorem 2. Q.E.D.

Proposition 3. If V(A ) > V(A ) > 0 — V(A 5) then the A —optimal policy is at2 1 1

least as good as the 12—optieal policy with respect to the regenerative stopping

problem. Likewise if V(A 2) C VQ 1) 
( 0 a V(15) the A 1—optimal policy is at

least as good as the 12—optimal policy with respect to the regenerative stopping

problem .

Proof. We only prove the proposition for the case V(A 2) > V(A~) > 0 since the

other proof is simi lar. Let be the 11—optiaal policy and ‘2 be the A2—optimal

policy.

First we establish the inequality EfT2] < LIT~] where the subscript I

refers to the policy 1T~ and 2 refers to Assume the contrary. Then

(12
_A
l) LIT2) c (12

_A
l) LET1) since 1

~ 
A~. Also 1(c 2) — 12!LT2) EE C1) 

—

A 211T1). Adding these two inequalities implies that 12 is strictly better than

for the A1—stopptng problem, a contradiction.

Returning to the main argument,

E[C2 ) — A~ EIT~J ‘ EEC1] 
— A~ LIT1) • V(11) > 0

U If vs divide both sides by LIT2) and 1LT1] respectively, the inequality is

maintained and

11C2) EE C
, . — A ~~~ — A,. Q.E.D.L
~
T2 j 1 — L~T1j i

Pro. a ta.ple 1 we see that for s~~~ probl there is no A such that

V(A) • 0. In that —a—plc the optimal policy was to never stop. Proposition 1
p

13
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implies that the existence of a £ A such that V(I) ‘ 0 is a sufficient con-

dition that there i~ a A c A such that V(A 5) • 0. The existence of such a

is of ten easy to verify. If we have such a ~ then the algorithm below will.

only consider A c X and which therefore belong to A.
Ths R generative Stopping Algorithm.

Step 0.A. Find a which is less than X~, the opt imal average cost of

the regenerative stopping problems. The models of the next section will pro—

vide examples of how this A
~ 
can be found. It is desirable that Ao be as large

as possible. We solve the A0—stoppi ng problem and let it be the optimal policy

for that problem. Since A
~ 

< X~, V(A0) 0. If a mistake is made and 1o is
greater than X5, then V(A0) 

c 0 and 10 can be changed until V(10) > 0.

Step 0.1. Set A l 
— sin (X1,~) where it is the optimal policy of the

A0—stopping problem. We solve the A1—stopping problem. Since ~ f ,
V(11) < 0. We check if Theorem 2 or Proposition 2 is satisfied. If not we

continue to Step 1.

- 

. 
Step 1. We are now in the general cas e where we have solved a A0—stopping

prob lem and a 11—stopping problem where A~ 
( X and Xl > ~~ The new A—stop—

pth.g problem to be solved is giv en by 1new 
— sin (1,X~) where it is the best

(lowest average cost) policy determined to date, and A • ciA1 + (1—a) 1A where

0 ( a < 1. The subscript I stand s for bisection and the subscript A stands

for approx imstion. Computational experiences sug gests choosing a low value of

a , since the approximation is quite accurate . We have A~ ~~ A~ + 1/2 A~•

is the A such that VA (A) a 0, where VaQi) is based on the four equations:

VA (A 0) • V(10) , V~(A0) • — LIT1 ]

(4) )
a V (A 1) , and V~(A1) • — ZET A )

--_______ TT TT
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These equation. determine the coefficients of the cubic approximation 
~~~~

+ Ill + 121
2 + $31~. The derivative conditions are based on Proposition

The A~~~—stopping problem ii solved and 1~ew replaces Ii if V( A~~~) 0 and re-
places A

~ 
if V(A~

ew ) ~ 0. We check if Theorem 2 or Proposition 2 is satisfied .

If not we return to Step 1.

Co ents. A value of a > 0 in Step 1 assures tha t the “ interval of uncer—

tainty ” goes to zero . Resides assuring that the “interval of wcsrtainty” goes

to zero there is a rationale for a positive a even if the cubic approx imation

is excellent. Suppose that a — 0 and 1A is close to either or A
1 557 A1.

Then vs would pref er that V(A A) ~ 0 so that the next interval of uncertainty
is (AA ,ll) rather than 

~
1o’1A~

• If a ) 0 then A~~~ < A~ and V(lnew) 
~

so that V(A new) is “more likely ” than 
~~~~ 

to be greater than or equal to

zero . When 1A is rou~1ily between A
~ 
and Ii the choice of a is not important .

If we stop before opt imality Proposition 3 says that either the current

10—optiaal policy be the current A1—optimal policy will be the best policy de-

termined to date , end that earlier efforts can be forgotten. The higher of

the average returns of these two policies can be compared wi th the current

lover bound on X~, lo.

An alternative to Step 1 would be the policy iterati on approach where

1aev — I~, where it ii the mos t recently considered policy. In this case the

sequenc e of A would be decreasing to X~.

o Finally, let it be the opt imal policy of a A—stopping problem. It is in-
teresting to observe, using the notation of (2), that

• ____ • 

~ 
+ 

LIC,] ; A  RET1] 
• ~ + • - ____

when V’ (A) exists, th. last equality by Proposition 1. Therefore X~ equals
the point where a supporting hyperpl s at 7(1) to the concave function V

17 
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would equal 0. Thi. is reminiscent of Puterssn and Iranelle ’ s result 1173

relating Newton’s method end policy iteration in the finite state finite

action Noward model.

IV. A Zeplace~~~t-Stockage I~ del

Derusn end Liebersan (9) consider a machine which requires one transistor.

When a new transistor is installed there is a probability f5 that it will per-

form at service level s. s • 1,2,3... . After each period the service level

either stays at the same level or the transistor fails with probability p . in—

dependent of the length of service . When the transi stor is in service , at the

end of the period one may either leave it in service or remove it if the ser-

vice level is unsatisfactory . Spare transistors are kept in a bin according

to the rule that , when empty , the bin is restocked with N new transistors and

the machine is shut down for one period. The objective is to minimize exp cted

average cost per period over an infinite horizon. The problem is to determine

a restocking level N5 and a rule for replacing s transistor in service which

meet this objective. For simplicity we will assume a less general cost struc-

ture than they did, but one which doss include their ample problem. We assume

an ordering cost of Z + eN when N > 1 transistor. are ordered where the constant

X includes the cost of operating with zero t ransistors during the one period it

takes for the order to be received . The operating cost per period is he + v

where s is the level of service and n is the number of transistors available ,

0 c n < N, and h is s positive holding cost. We also want v, nonnegative and

increasing in 5.

Dermen and Lieber~~~ [9) for mol ate the problem as a countable state Mmrkov

decision problem with states Ci ,.) i ) 1, • > 1, and a state 0. When the sys-

tem is in state (i ,s) they mean that I units of stock are on hand of which one

• -- is installed at operating levs.1 s. Th. possible decisions in state (1,s) are

to replace the emit in serv ice at the end of the period or sot to replace the

)
- 
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t --. - - - —- —  -- -.-- — —  —- — - 

S - • -- -~~ .— -.- -, •

- -



- -  ~~ - -~~~~~~~~~~~~~~~~~~~~~ -~~— -~~~- - . - --•--- —-- - - - - ---- - - -
~~~~

-- - -
~~~~~

- 
~~~

—----- - -
~~~~

unit in service. At state 0 they decide how many units to order. On page 615

of 19) t hey outline their algor fthe whose overall plan is to decompos. the

replacing and the ordering decisions. First they determine an upper bound I

- - 
for N, and for N — 1,..., 1, calculate by policy iteratio n the optimal policy

for the problem of determining for which service levels the transistors should

be replaced with a new one. Derman and Lieberman develop several tests to

speed up the calculations. Bell (2) reconsiders th. problem and applies the

monotone stopping theorem to obtain some new tests to speed up the calcula-

tions , but the overal l approach is that of Derman and Lieber men.

We viii refo rmulate the problem by s implify ing the sta te apace at the

$ price of enlarging the action space. We let the state apace be the integers

i, i ‘ 1. where state i means that i units are on hand including any in ser—

vice. In this formulation 1 is the initial state. For any state i there are

a countable number of continua actions a — 1,2,3,..., ~ where taking action a

means that the installed unit viii be replaced if it is operating at level a

or worse. The expected cost for state i and action a is

C(i,a) • ~~ (hi4v ) f5 
! + E (hi4v ) f . (5)

sca p

The expected length of tin, in state i is E f A + E f5. For convenience
sc a s )a

we have assumed a highly plausible form of the replacement rule. This assump—

tion can be justified from equation (6) which follows. Because of the simple

way in which the costs and expected transition tin. very with the action a, the

countable number of decisions does not cause a computational difficulty. Since

the best action can always be determined there is no theoretical c~~~lication

from going from a finite number of continue actio ns to an infinite ni~~ er.

We make a second major alter ation in the formulation by a.semieg that

P~~~a l i f i a i + l r a t h e r  than f o rj . i . . 1. Thus if $ te the reorder level

we will perceive the stock Level as going from the states 1 to 2,. .co N to N + i

19
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to 1, rather than as they do physically Eros N to N—i,... to 0, to N. In

the averaging case this reordering viii lead to the same average cost per

period. The purpos. in this reordering is to allow a stop decision with each

state 1, i ) 2, and so that for the A—stopping problems the set I will satisfy

the monotone condition and Theorem I can be used. The cost of stopping,

CU ,s), is K + c(i—1), it takes one period, and the system return s to state 1.

ic multiply c by i — 1 since if we stop at state i the reorder level is i — 1.

For each A-stopping problem the smallest state where we stop , and hence the re-

corder level, will be determined by applying the monotone stopping theorem.

To see that thu reformulation is justified consider the policy which in

the Derman and Lieberman fo rmulation or ders two units in state 0, replaces in

state (1,.) if a > 3, and rep laces in stats (2 ,s) if a 2. The expected cost

per cycle is K + 2c + E (h4v ) f + E(h$v,) f + (2h+v 1) f1 
I +

~ (2h4v5) f5 and the expected length of the cycle is 1 + E f + 
~ 

f5 +
s ’2 s<2 ~

+ 
~~ 

f .  In our formulation that policy is : choose action 3 when in state
~ s ’2

1. action 2 when in state 2 , and stop when in state 3. It can easily be seen

to base the same expected cost and same expected length per cycle as those

jest gives.

1. order to apply the Pagen.rative Stopping Algoritta, we first check

Aas~~~tiosi s 1-3 for the A—stopping problem in order to determine A. For any A

1.t S • (i:hi ‘ ~} .  Ass umptions 31. 3ii, 3iii are satisfied . Assumption 2 is

satisfied. Assi~~ t1oe ii is not satisfied but Ms~mption lii is satisfied.

Thus A~~~(—~~,+.) and ciear1y thete is a la r$sX gAs uc h that V ( X ) c O .  Next

we look at th, set I • (IsC(i ,s) (mis C(i,a) + C(i+l,s)), i > 2) —
a a

• (i:0 mis C(i,a) + c , I 2) where Cci,.) is the cost of stopping for the
a (
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A—stopping problem and equals K + c(i-3) — A. The C(i ,a) are the cont inue

costs for the A—stopping problem end equal ~~ (biiv,—A) f5 ~ + E (h14v5—A ) f5.sCa •)a

Since C(i,a) is increasing in i because of the holding costs, I i~ of the fore

(t:1>j } for some integer i~ which is a closed set and Theorem 1 can be ap—

plied. It turns out that the best cont inue decision is easily determined for

• the A—stopping probl em since P1~+1(a) • 1 regardless of the choice of a. For any

state i the best continue action, a’(i), is

a’(i) • in! {s:hl+v5>A). (6)

I -- ~~t is precisely (6) that Bell f 2) exploits in his approach to this problem. We

are ready to apply the algorithe once we have determined A0, the lower bound on

This lowe r bound is obtained by assuming that f1 1, that we always go to

the most favorable operating state. This ass~mption eliminates the replac~~~nt

decision and
N

A 0 — ala ((K + Ic + (v1+bi) !3)/(l+wIp)}. (1)
N>1 i. p

!~~~~~!!.i• Th. first problem we consider is one that is presented in both Dermmn

and Liebermen [93 and Bell [23 . The data are p • .1 f • (l/2) ; s — 1,2,3 

h • 4, w5 — 100 (1.4 — ( .2/2 ’~~)) — 4 , K — 140, and c — 20. in this example

we will let a , the weight ing factor of the Begenerative Stopping Algorithe be

.1.

Firs t eq. (7) is solved and A
~ • 123.63 with the minimizing N • 1. Than

the A0—stopping problem is solved . For state 1 a~(]) • 2 using (6) since

4 + 116 < 123.63 but 4 + 126 > 123 63. The value of C(l ,2) (4+116 — 123.63)

(I/2)(10) + E (44w —123.63) f — 13.29. For state 2 a* (2) • 1 and C(2 ,1)>  0
.520 -

so that 2 t B. Since we stop at state 2 the reorder lsvel L. 1. 1(2,123.63)
• 160 — 123.63 — 36.37, and C(l,123.63) — l3e29 + 36.37 • 23.08 • V(123.63).

0
21
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We do not determine a value for ~~, and 11 — 123.63 + (23.08/6 .5) — 127 .18, the

tVStage cost per period of the above policy i. When we solve the 127.18—stopping

problem, the policy w is again optimal and V(l27.lS) • 0 so that r is optimal by

Theorem 2.

In order to gain more experience with the algorithm the following problems

were solved: As before p — .1, f • (l/2)~~, s — 1,2.3,... K — 140, c • 20, but

h • .1 and v • H(1— (15/l6)’~~) — 1 where H is a scalar . These problems had

optimal order quantities N5 of between 10 and 20. Recall that the algor ithms

of 1.11 [2] and Derman and Lieberman 19] must solve N5 policy iteration prob-

lems.

Different runs were made by using different values of the weighting factor

a and the parameter H. The computational results in terms of the ni~~er of

A—stopping problem. solved were

a • 0.0 a — .02 a • .10 a • .25

H — 4.6 4 5 6 6

H — 4.8 5 5 5 6

H — 5.0 5 5 5 6

H — 5 . 2  5 5 5 5

V. Markov Deterioration with Uncertain Information

Rosen! ield 118) considers a maintenance problem where the underlying Narkov

process has actual states 0,l,...,$, where 0 is the best state and N is the

worst state. The actual •ta~te is not known except at certain times and the ob-

served state is (i,k) which ~~~~ that k periods ago the system was observed in

state i, where 0 < I, ‘ I, and k ‘ 0. Each per iod the actual state of the system

• changes according to a )Isrkov transition matrix P. Thus if the process is in

state (i,k) the probability the actual state is j is P~~, the ij element of the

metrix P to the kth power.

22 
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I

Each period there are three availabl, decisions for state (i,k), repair ,

no action, or Laspe~t. If the repair decision is selected , the cost is N and

th. system moves t~~ state (0,0) the next period. With the decision no action
N kthe expected cost is E ~~~ 1 4 and th. system moves to state (i ,k+l) the next

t j— 0 ~
period, whe re L1 is interpreted as the one—period operating cost when the ma-

chine is in state 3. The expected cost associated with the inspect decision
• N kis N + E Pi,L, where N is the cost of inspection, and the systems moves to

3—0 J ’  
kst ate (J,0) with probability

This is the Rosenfield model except that we have not permitted the cost of

repair to depend on the actual state . Like Rosenfield we v-ill require that the

matrix P satisfy ~~ — 0 if 3 < 1, P~ c 1 except for 3 • N. and ~~ is non—
j .k

decreasing in i for k • l,2,...,N. Rosenfield cites results which show that if

P satisfies the above conditions then so will We will assume that the

are increasing in 3. Prom Rosunfield [l8,L~~~a 1] we have th. results that for
N kany increasing function V4. 0 c 3 < N. ~~ Pj4 V4 is increasing in i and in k

.1 3.0 ~
when P satisfies the above conditions.

A.. with the replacemen t and stockage model of the previou s section we will

reformulate the problem and simplify the state space by enlar~irig the action

space. In our formulation the states will be the actua l states 0,l,....N. For

3 each state I there will be both a countable number of continue actions and a

countable nt~~er of stopping actions . The continue actions are of the form

a—inspect, a 0, and have the interpretation , “inspect after a periods have

passed.” The decision takes a + 1 periods and the associated cost when in state

i is (1.1 + ~~ PI3LJ 
+ ... + ~~ P~~L3 

+ N) . For a • 0 this cost i. Li 
+ N. The

a+l
S system then moves to state 3 with probability 

~~ 
. The stopp ing actions are

of the fore a—repair, a ) 0. -
~~~~~ have the interpretation, “repair after a

periods have passed.” This decision takes a + 1 period, and the associated cost

S
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when in state I i. (L +EPi3L3 + ... + EP~~
’L

3 
+ N). Per a • 0 this cost is

1, and for a • 1 this cost is Li + I. The system then return. to state 0. More

than one stopping decision does not conform with the fo imu latto n of Sect iOn 3.

However, this will cause no difficulty since for each A—stopping problem we can

identify the lowest cost stopping decision.

There is some loss of generality with our formulation of the state space.

Once the system is in state (i,0), 0 C i < N , in the Roseufield notation the

formulations are the same. However , if the initial state is (i k), k > 0. t hen

our policies do not apply until the first inspection or repair takes place.

In order to apply the Regenerative Stopping Algorithm , we check Assump-

tions 1—3 for the A—stoppi ng problem in order to determine A. For A <

let S • {N’. It is easily seen that Assumption 3 hold.. The assumption that

sup (max C(i ,a)) Is bounded does not hold since a can be arbitrarily large.
i C S C a C A  N
However, we will see that only actions satisfying E P~4L4 < A < LN need1—0
be considered , and for this finite set of actions the assumption in question

doss hold. Assumption li is satisfied by the stopping decision 0-repali

whose cost is N — A .  Thus A • (— •,L~). It will not necessarily be the case

that there is a ( f such that V(~) < 0, and for certain parameters it is

optima l never to repair. For these probl the Regenerative Stopping Algorithm

doe. not apply .

For any A—stopping problem the set B • (i:C(i ,s) < mm (C(i ,a)
a A ~F a

+ EP14c(j,s))) where C(j,s) ii the cost incurred using the min imum cost stop-
I - ’

p ing decision when in state 3 for the A—stopping problem. The C(i,a) are the

continue costs for the A—stopping probl . The set B is rather difficult to

determine, so instead we consider D . (i:L~> A ) .  This set is closed and is a
-

• subset of B since if L1 > A then C(i ,a) > 0 andEP~3
C(j ,s) C(i ,s) by

24
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Rosenfisid’ s l e a  as the C(j s) are increasing in 3 so that i c B.
I

As a preliminary to solving the A—stopping problem we determine the mini-

mum cos t stopping decisions C(i ,s ). Let n(t) be the largest a , a > 0, such

• thatEP~ L4 A , If L1 > A then no a satisfies th. previous inequality and
I

by convention we set a(i) • — 1. With this convention the minimum cost stop-

p ing decision for state I is u(i) + 1—repair. The cost incurred using this

decision , C (i,s), is (I. 4.. .4 p~~
i) L + N — (Q(i) + 2)A) . If a(i) • — 1,z i I

then C(i s) • N — A .

The A—stopping problem I. solved a. follows. Per I D • {i:L~> A),

Theorem 1 applies and ye stop. For these states o(i) • — 1, and G(i ,A)

• C(i,s) — N — \ .  For i i 0 we compute C by the standard equation of opt i—

mslity starting with the largest state and going down to 0. Thus we have

G(i,A) • *in (C(i.s), sin (C(i ,a) +EP~~
’G(j,k))). (8)

0<a o(i) I

The C(i ,a) in (8) equals (L1+ EPI3
L
J 

4 ... + EP~L 
4 N — (a+l)A). The

I 3 3. .
s t a t e s  3 such that P~~ > 0 are necessarily larger or equal to i, and C has

prev ioysly been evaluated for those states. We only need to consider action

a—inspec t such that a < c~(I), since C(i ,a) is increasing in a for a ‘ o (i)

and by Rosenfield ’s l e a , EP~3c(j, A )  is increasin g in a.
I

The initial lover bound A 0 on the optimal average cost is obtained by
assuming that an insp ection brings the system back to state 0, so that our

costs are as with 
~~~~ inspection, but we get the benefit of a repair. tn this

case

A0 
• sin (L0+... +Ep~~¼,4~)/(a+l). (9)

We ass~~ that there are 3 states 0, 1, and 2. The cost N of re—

pair is 40, and the cost N of inspection is 3; I,~ • 0, 
~~ 
• 10, end 

~2 
• 20.

The transition matrix is

I ~~~~~~ 

- --

~~~~~ 

_
~~



.8 .1 .1

P. 0 .9 .1

0 0 1.0

• We will not try to determine a c A such that V(X) ( 0 and will address

this problem at step 0.1. of the Regenerative Stopping Algorithm. We calculate

A0 by (9). The minimizing a is 1 and A~ • (045)12 — 2.5. The 2.5—stopping is

solved. The set D • {l,2} so that 6(2,2.3) — 6(1,2.5) • 40 — 2.5 • 37.5. For

state 0 vs determine a(0) which is 0 since 0 < 2.5 and (.8,.l,.1] times

[0,10,20] 3 >  2.5. Therefore 6(0,2.3) • sin (40—3, 0 + 5 — 2 . 5  + .8 6(0,2.5)

+ .2(37.5)) — 33 • V(2.5). The first term in the parentheses is the cost of

the decision 1—repair and the second ter m is the cost of the decision 0—inspect.

The mi Lan is achieved with the decision 1—repair and the average cost period

is 2.5 + 35/2 • 20. Thi. presents a difficulty since 20 d A and cannot be used .

We arbitrarily choose a A £ A and hope that V( A ) < 0. If V(A) 0 does not ob—

tam , vs will try . larger A ( A  . Thi, arbitrarily chosen X i s  17.5 and we

solv, the 17.5-stopping problem. D • {2) so that 6(2.17.5) • 40 — 17.5 • 22.5.

For state 1 o(l) equals 13. The minimizing action for state 1 is to inspect

after S periods. For state 0 o(0) equals 14. The minimizing action for state

0 is to inspec t after 5 periods. V (17.5) • 6(0,17.5) • — 84.816 and the e*—

pect.d time until stopping is 12.803. Thus 17.5 can play the role of X.
The next A used was a weighted average of .9 A~ and .1 A1 and equaled

9.681. This was lover than the s erage cost of the X1—stopping problem, 
17.5

— (84.816/12.803). Thi. stopping problem is solved and V(9.481) — 6(0,9.481)

• - 

~~~~~ ezt A used is 9.448. The stopping problem is solved and V(9.44$)

• 6(0,9.441) • .1327. The optimal policies for the ~.48l and 9.448 stopping

problema are the s s o  that Prop..iti.e 2 can be used to confirm opUmality.

: .± I •~• • . • ~•~iii i••~•••. ~~
‘±
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This policy is 0—repair for states 1. and 2 and 2—inspect for state 0. For

A • 9.448, 6(2 ,9.448) • 6(1.9.448) — 30.532. Par state 0 cz(0) • 4 and the

optimal decision is 2—inspect. The value of 6(0,9.448) • .1327 was obtained

by solving 6(0,9 448) “ - 19.8445 + 5 + .488 (30.552) + .512 6(0,9.448).

C
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